Simplification and Approximate value
BODMAS – ( bracket of division multiplication addition and subtraction)
Step 1 – First of all solve brackets
Step 2 – After that solve powers and surds ( squares , cubes , square root , cube root etc.)
Step 3 – After that solve multiply or divide from left to right which comes first .
Step 4 – Finally solve addition or subtraction from left to right which comes first.
Laws of integral exponents
1. [latex]a^{x}[/latex] = [latex]a\times a\times a[/latex] ……………. [latex]a\times a[/latex] (x times)
2. [latex]a^{x}\times a^{y}[/latex] = [latex]a^{x + y}[/latex]
3. [latex]\frac{a^{x}}{a^{y}}[/latex] = [latex]a^{x – y}[/latex]
4. [latex](a^{x})^{y}[/latex] = [latex]a^{xy}[/latex]
5. [latex]\sqrt[n]{a}[/latex] = [latex]a^{\frac{1}{n}}[/latex]
6. [latex]\sqrt{a}[/latex] = [latex]a^{\frac{1}{2}}[/latex]
7. [latex](a^{x})^{y}[/latex] [latex]\neq[/latex] [latex]a^{x^{y}}[/latex]
Example (7) [latex](2^{2})^{3}[/latex] = [latex]2^{6}[/latex] = 64
[latex]2^{2^{3}}[/latex] = [latex]2^{8}[/latex] = 256
64 [latex]\neq[/latex] 256
8. [latex](\sqrt[m]{(\sqrt[n]{x})^{a}})^{b}[/latex] =[latex]x^{\frac{a\times b}{m\times n}}[/latex]
Short tricks to find square roots
First remember the squares from 1 to 9
[latex]1^{2}[/latex] = 1
[latex]2^{2}[/latex] = 4
[latex]3^{2}[/latex]= 9
[latex]4^{2}[/latex]= 16
[latex]5^{2}[/latex]= 25
[latex]6^{2}[/latex] = 36
[latex]7^{2}[/latex] = 49
[latex]8^{2}[/latex] = 64
[latex]9^{2}[/latex] = 81
1. [latex]\sqrt{2809}[/latex] = ?
First check the unit place of this number (which is 9)
3^2 = 9
And 7^2 = 49
The unit place of the number is 3 or 7
Ignore the last two digits (09)
Remaining digits = 28
Now 28 is in between 5^2 and 6^2 ( take the smaller one i.e. 5 for the square root except unit place which is 3 or 7 )
5*6 = 30 > 28
Since 28 is small than 30 so we take smaller one in 3 and 7
[latex]\sqrt{2809}[/latex] = 53
2. [latex]\sqrt{5776}[/latex] = ?
57 and 76
4^2 = 16 and 6^2 = 36
7^2 < 57 < 8^2
7*8 = 56 < 57
Since 57 is greater than 56, so we take larger in 4 and 6
[latex]\sqrt{5776}[/latex] = 76
3. [latex]\sqrt{12544}[/latex] = ?
125 and 44
2^2 = 4 and 8^2 = 64
125 lies between the squares of 11 and 12 (smaller one is 11)
11*12 = 132 > 125
Since 125 is smaller than 132, so we take smaller in 2 and 8
[latex]\sqrt{12544}[/latex] = 112
Short tricks to find cube roots
First remember the cubes from 1 to 9
[latex]1^{3}[/latex] = 1
[latex]2^{3}[/latex] = 8
[latex]3^{3}[/latex] = 27
[latex]4^{3}[/latex] = 64
[latex]5^{3}[/latex] = 125
[latex]6^{3}[/latex] = 216
[latex]7^{3}[/latex] = 343
[latex]8^{3}[/latex] = 512
[latex]9^{3}[/latex] = 729
1. [latex]\sqrt[3]{1744}[/latex]
First check the unit place of the given number (which is 4)
Now find from the above cubes that which cubes has unit place 4 (which is 4)
So unit digit of our cube root is 4
Now ignore the last three digits 744
Remaining digits = 2
Now 1^3< 2 < 2^3 ( take smaller one which is 1)
So our cube root is 14
2. [latex]\sqrt[3]{17576}[/latex]
Unit place of this number = 6
So unit place of our cube root is 6 (6^3= 216)
Ignore the last three digits
Remaining digits = 17
2^3< 17 < 3^3 ( take smaller one which is 2 )
So our cube root is 26
3. [latex]\sqrt[3]{3778688}[/latex]
Unit place of this number = 8
So unit place of our cube root is 2 (2^3= 8)
Ignore the last three digits
Remaining digits = 778
9^3< 778 < 10^3 ( take smaller one i.e. 9)
Our cube root is 92
Few questions of simplification and approximate value
1. What come in place of ? [latex][(7 – 5) + 2^{3} – 4]\div2 – 5 = ?[/latex]
a) 3 b) 2 c) -3 d) -2
Answer – d) -2
Solution [latex][(7 – 5) + 2^{3} – 4]\div2 – 5[/latex] = [latex][2 + 2^{3} – 4]\div2 – 5[/latex]
= [latex][2 + 8 – 4]\div2 – 5[/latex]
= [latex][6]\div2 – 5[/latex]
= 3 – 5 = -2
2. [latex]\sqrt{\sqrt{{14641}}}[/latex] is equal to
a) 10 b) 11 c) 21 d) 9
Answer – b) 11
Solution [latex]\sqrt{\sqrt{11\times11\times11\times11}}[/latex]
= [latex]\sqrt{11\times11}[/latex] = 11
3. [latex]\sqrt{56+\sqrt{56+\sqrt{56+}}}[/latex]………………… is equal to
a) 8 b) -7 c) 6 d) -14
Answer – a) 8
Solution : Let x = [latex]\sqrt{56+\sqrt{56+\sqrt{56+}}}[/latex] …………………….
squaring both sides
[latex]x^{2}[/latex] = 56 + [latex]\sqrt{56+\sqrt{56+\sqrt{56+}}}[/latex]……………………….
[latex]x^{2}[/latex] = 56 + x
[latex]x^{2}[/latex] – x – 56 = 0
(x – 8) (x + 7) = 0
x = 8 or x = -7
hence x = 8 ( This is because square root only gives positive value )
4. simplify [latex]\frac{1}{8} + \frac{1}{120}+\frac{1}{330}+ \frac{1}{638}+\frac{1}{1044}+\frac{1}{1548}[/latex]
a) 6/43 b) 13/54263 c) 1/43 d) 42/43
Answer – a) 6/43
Solution [latex]\frac{1}{8} + \frac{1}{120}+\frac{1}{330} + \frac{1}{638}+\frac{1}{1044}+\frac{1}{1548}[/latex]
= [latex]\frac{7}{7}[/latex] [ [latex]\frac{1}{8} + \frac{1}{120}+\frac{1}{330} + \frac{1}{638}+\frac{1}{1044}+\frac{1}{1548}[/latex] ]
= [latex]\frac{1}{7}[/latex] [ [latex]\frac{7}{8} + \frac{7}{120}+\frac{7}{330} + \frac{7}{638}+\frac{7}{1044}+\frac{7}{1548}[/latex] ]
= [latex]\frac{1}{7}[\frac{7}{1\times8}+\frac{7}{8\times15}+\frac{7}{15\times22}+\frac{7}{22\times29}+\frac{7}{29\times36}+\frac{7}{36\times43}][/latex]
= [latex]\frac{1}{7}[\frac{1}{1}-\frac{1}{8}+\frac{1}{8}-\frac{1}{15}+\frac{1}{15}-\frac{1}{22}+\frac{1}{22}-\frac{1}{29}+\frac{1}{29}-\frac{1}{36}+\frac{1}{36}-\frac{1}{43}+\frac{1}{43}][/latex]
=[latex]\frac{1}{7}[\frac{1}{1}-\frac{1}{43}][/latex]
= 6/43
5. Find the value of [latex]\sqrt{-3.5\times\sqrt{-3.5\times\sqrt{-3.5}}}[/latex]……………..
a) 3.5 b) – 3.5 c) 0 d) 1
Answer – b) – 3.5
Solution Let x = [latex]\sqrt{-3.5\times\sqrt{-3.5\times\sqrt{-3.5}}}[/latex]
[latex]x^{2}[/latex] = -3.5 [latex]\sqrt{-3.5\times\sqrt{-3.5\times\sqrt{-3.5}}}[/latex]
[latex]x^{2}[/latex] = – 3.5 x
x = – 3.5
6. Simplify [latex]2+\frac{3}{5+\frac{6}{7+\frac{2}{3}}}[/latex]
a) 234/17 b) 451 / 123 c) 546/119 d) 335/133
Answer – d) 335/133
Solution [latex]2+\frac{3}{5+\frac{6}{7+\frac{2}{3}}}[/latex]
= [latex]2+\frac{3}{5+\frac{6}{\frac{23}{3}}}[/latex]
= [latex]2+\frac{3}{5+\frac{18}{23}}[/latex]
= [latex]2+\frac{3}{\frac{133}{23}}[/latex]
= [latex]2+\frac{69}{133}[/latex]
=[latex]\frac{335}{133}[/latex]
7. If [latex]\frac{4}{\sqrt[3]{121}+1+\sqrt[3]{11}}[/latex] = A[latex]\sqrt[3]{11}+B\sqrt[3]{121}[/latex] + C, then A + B + C is equal to
a) 2/11 b) 2/3 c) 4/11 d) 1/6
Answer – b) 2/3
solution [latex]\frac{4}{\sqrt[3]{121}+1+\sqrt[3]{11}}[/latex] = [latex]\frac{4}{\sqrt[3]{121}+1+\sqrt[3]{11}}[/latex] [latex]\times[/latex] [latex]\frac{\sqrt[3]{11}+1}{\sqrt[3]{11}+1}[/latex]
= [latex]\frac{\sqrt[3]{11}}{(11^{\frac{2}{3}} + 1 + 11^{\frac{1}{3}})(11^{\frac{1}{3}}+1)}[/latex]
= [latex]\frac{4}{12}\times(\sqrt[3]{11}+1)[/latex]
= [latex]\frac{1}{3}\sqrt[3]{11}+\frac{1}{3}[/latex]
A = 1/3 , B = 0 and C = 1/3
A + B + C = 1/3 + 1/3 = 2/3
8. [latex](\sqrt[3]{(\sqrt[4]{13})^{6}})^{4}[/latex] is equal to
a) 13 b) 2197 c) 169 d) 1
Answer – c) 169
Solution [latex](\sqrt[3]{(\sqrt[4]{13})^{6}})^{4}[/latex] = [latex](13)^{\frac{6\times4}{4\times3}}[/latex]
= [latex]13^{2}[/latex] = 169
9. [latex]\frac{\sqrt{205209}}{\sqrt[3]{3442951}}[/latex] is equal to
a) 1 b) 2 c) 3 d) 4
Answer – c) 3
Solution [latex]\sqrt{205209}[/latex] = 453
[latex]\sqrt[3]{3442951}[/latex] = 151
[latex]\frac{\sqrt{205209}}{\sqrt[3]{3442951}}[/latex] = 453/151 = 3
Problems for Practice
Directions (1-10): What value will come in place of the question mark (?) in each of the following equation ?
1. [latex]\frac{?}{529}=\frac{324}{?}[/latex]
a) 404
b) 408
c) 410
d) 414
e) 416
2. {2.002 + 7.9(2.8 – 1.4)} = ?
a) 11.312
b) 12.204
c)13.062
d) 14.442
e)11.006
3. [latex]\frac{18\times15-20}{(3.2+9.4)-7.6}=?[/latex]
a) 25
b) 100
c) 150
d) 50
e) none of these
4. [latex]\frac{(5.7\times5.7\times5.7+2.3\times2.3\times2.3)}{(5.7\times5.7+2.3\times2.3-5.7\times2.3)}[/latex] = ?
a) 2.3
b) 3.4
c) 5.7
d) 8.0
e) 1
5. [latex]456\div24\times38-958+364[/latex] = ?
a) 140
b) 128
c) 132
d) 136
e) 144
6. [latex]\sqrt{13.3225}[/latex] = ?
a) 3.45
b) 3.55
c) 3.65
d) 3.75
e) 3.85
7. [latex]3\frac{1}{4}+2\frac{1}{2}-1\frac{5}{6}=\frac{?^{2}}{10}+1\frac{5}{12}[/latex]
a) 25
b) [latex]\sqrt{5}[/latex]
c) 625
d) 15
e) 5
8. [latex](\sqrt{8}\times\sqrt{8})^{2}+9^{\frac{1}{2}}=?^{3}+\sqrt{8}-340[/latex]
a) 7
b) 19
c) 18
d) 9
e) none of these
9. [latex]\sqrt{?}=(78\times148)\div481[/latex]
a) 484
b) 529
c) 576
d) 625
e) 676
10. [latex]6\frac{2}{5}\times5\frac{5}{8}\times11\frac{11}{14}\div6\frac{2}{7}[/latex] = ?
a) 63.5
b) 64.5
c) 65.5
d) 66.5
e) 67.5
Directions (11-20): What approximate value will come in place of the question mark (?) in each of the following equation ?
11. 185% of 1359 + 18.5% of 1319 = ?
a) 2510
b) 2630
c) 2760
d) 2890
e) 3025
12. [latex]43.03\times27.96+11.98\times\sqrt[3]{42870}=?[/latex]
a) 1625
b) 1705
c) 1775
d) 1815
e) 1855
13. [latex]{(8.66^{2})\times13.98}\div\sqrt{50}[/latex]
a) 120
b) 130
c) 140
d) 150
e) 160
14. [latex]\sqrt{5475}\div4.98[/latex] = ?
a) 11
b) 15
c) 20
d) 24
e) 27
15. [latex]118.07\times1349[/latex] + 169% of 784 = ?
a) 2520
b) 2610
c) 2750
d) 2870
e) 2930
16. [latex]\sqrt{2300}\times\sqrt{240}[/latex] = ?
a) 685
b) 705
c) 815
e) 745
e) 635
17. [latex]119.00.\times14.987+21.04\times13.96[/latex] = ?
a) 2080
b) 2120
c) 2150
d) 2175
e) 2250
18. [latex](\frac{24}{9})^{2}\times\frac{399}{99}\div\frac{41}{899}[/latex] = ?
a) 600
b) 650
c) 700
d) 630
e) 750
19. [latex]-(4.99)^{3}+(29.98)^{2}-(3.01)^{4}[/latex] = ?
a) 550
b) 590
c) 620
d) 650
e) 690
20. [latex]44.4\times4.44\div7.98+\sqrt{2400}[/latex] = ?
a) 50
b) 60
c) 70
d)80
e) 90
Directions (1-10): What value will come in place of the question mark (?) in each of the following equation ?
21. [latex](0.2)^{\frac{3}{2}}\times0.008\div\frac{1}{\sqrt{0.2}}=(0.2)^{?}[/latex]
a) 1
b) 2
c) 3
d) 4
e) 5
22. [latex](7776)^{1.3}\times(36)^{1.25}\div(216)^{2}\div(1296)^{-1}=6^{?}[/latex]
a) 3
b) 4
c) 5
d) 6
e) 7
23. [latex]3\frac{2}{7}[/latex] of [latex]4\frac{5}{11}[/latex] of [latex]\frac{3}{35}[/latex] of 3080 = ?
a) 3864
b) 3948
c) 4014
d) 4124
e) none of these
24. [latex][\sqrt[5]{\sqrt[2]{38416}}]^{\frac{5}{2}}[/latex] = ?
a) 14
b) 196
c) 2744
d) 38416
e) none of these
25. [latex]\frac{3.673^{3}+7.327^{3}}{3.673^{2}+7.327^{2}-(3.673\times7.327)}[/latex] = ?
a) 10
b) 11
c) 12
d) 9
e) 13
Directions (26-30): What approximate value will come in place of the question mark (?) in each of the following equation ?
26. [latex]\sqrt{\sqrt{29585}+\sqrt{23100}}[/latex] = ?
a) 18
b) 20
c) 16
d) 22
e) 24
27. 48.5% of 7842 + ? % of 1318 = 4515
a) 42
b) 48
c) 54
d) 57
e) 60
28. [latex]\sqrt[3]{226980}[/latex] = ?
a) 59
b) 61
c) 63
d) 65
e) 67
29. [latex]\sqrt[3]{29790}\times\sqrt{1760}[/latex] = ?
a) 1200
b) 1250
c) 1300
d) 1350
e) 1400
30. [latex]1873\div84.05+40.81\times16.96[/latex] = ?
a) 700
b) 720
c) 740
d) 760
e) 780
Answers
1. d 2. c 3. d 4. d 5. c
6. c 7. e 8. a 9. c 10. e
11. c 12. a 13. d 14. b 15. e
16. d 17. a 18. d 19. e 20. c
21. d 22. c 23. a 24. a 25. b
26. a 27. c 28. b 29. c 30. b